在计算机视觉领域,图像分割有非常广泛应用的场景。基于这样背景,飞桨开发了图像分割开发套件PaddleSeg,目标是降低开发门槛,更容易实现产业落地。图像分割开发套件基于飞桨的核心框架,主要做了以下方向的建设:一是数据增强,将工业级常用分割算法开放出来;二是在模型层使用模块化的设计,将整个分割的模型拆分成三块,包括骨干网络、分割网络和模型损失函数。拆解之后,可以让这些模块自由组合,能够解决特定场景的问题。三是在训练场景上,PaddleSeg里面做了大量性能方面的优化,在显存优化和预测速度上都做了大量的工作。四是易用性方面,通过实际的项目打磨验证,找到使用过程当中的痛点并且解决掉。训练模型工业级部署,开发套件也做了集成,可以帮助广泛开发者使用。
PaddleHub集成了预训练模型和迁移学习的工具,在最新的升级中增加了两个核心能力:一是自动化调参,基于一键自动超参搜索;二是进一步夯实了一键模型化服务的能力,开发者可以很容易把自己想要用的模型快速变成服务。为了提升易用性,PaddleHub的API采用了高层封装,包含迁移任务、迁移策略和数据处理等,方便开发者使用,在解决了开发效率的问题的同时,保持了灵活性。
时间:12-07 13:30 - 18:00
地点:中华路甲10号